跳至正文

基于字典学习的超像素复原

研究图像的统计数据表明,图像块可以表示为选择适当超完备字典的稀疏线性组合形式,通过这种观测报告的启发,可以寻求一种对低分辨率输入图像块的稀疏表示,然后用此稀疏表示的系数来生成高分辨率输出。压缩感知理论(Compressive Sensing,CS)指出,一幅图像能够在非常苛刻的条件下由它的一组稀疏表示系数在超完备字典上得到精确重建。通过对低分辨率图像块字典和高分辨率图像块字典的联合训练,可以强化低分辨率和高分辨率图像块与之对应真实字典稀疏表示的相似性,从而低分辨率图像块的稀疏表示和高分辨率超完备字典一起作用可以重建出高分辨率图像块,然后由高分辨率图像块连接得到最终完整的高分辨率图像。学习字典对是块对更紧凑的表示,它只需对大量图像块对进行采样,相比传统方法,该方法的计算成本得到显著地降低。稀疏表示的有效性在图像超分辨率重建和人脸幻构(face hallucination)的特殊情况下均得到了证明。

特别注明:部分图片和内容源于相关论文或书籍,如涉及侵权,请联系删除。